If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81x^2-12x-16=0
a = 81; b = -12; c = -16;
Δ = b2-4ac
Δ = -122-4·81·(-16)
Δ = 5328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5328}=\sqrt{144*37}=\sqrt{144}*\sqrt{37}=12\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12\sqrt{37}}{2*81}=\frac{12-12\sqrt{37}}{162} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12\sqrt{37}}{2*81}=\frac{12+12\sqrt{37}}{162} $
| 1x-3)=5 | | 70=45x+57-43x | | −14.2y=−7.1y= | | 31=20x+1-38x | | 4(n/5-1)=7 | | 7u+3=3u+13 | | 6d−1=77 | | 9+7d-6d=-5 | | 2x=4x+108=180 | | 16x^2+12x-81=0 | | 4x+2x=x+x+20 | | 43=x25 | | T=7g | | x^2+22=13 | | 8x+34=226+4x | | 12x-11+52=9x-15 | | 8x+34=225+4x | | 8x+34=224+4x | | -7a-1=-141 | | 8x+34=223+4x | | 8-(-20)=x | | 8x+34=220+4x | | 26=11x+4 | | -12x+13x=-32 | | 8x+34=218+4x | | 8x+34=238+4x | | 8x+34=248+4x | | 4n-1(-2n-5)=-2 | | 8x+34=288+4x | | x+24=-70 | | 11.95x-6.95=174.25 | | 135+70+93=+x |